Chem 444 (Physical Chemistry II), Fall 2020

Thermodynamics and Statistical Mechanics


Past Versions and ICES Scores for Teaching Effectiveness: Spring 2020 (5.0*), Fall 2019 (5.0*), Spring 2018 (5.0*), and Spring 2015 (4.86*) where * indicates inclusion on UIUC List of Teachers Ranked as Excellent by Their Students.

Course Webpage:

Lectures: MWF, 10–10.50 am, 103 Mumford Hall during Aug 24–Nov 20 and via Zoom from Nov 30–Dec 9. For students enrolled in the online version (ON1) of Chem 444, lectures will be made remotely accessible via Zoom.

Course Objectives:

- To encourage thinking of chemical and physical processes in the language of microscopic states, stochastics, correlations, dynamics, and fluctuations (achieved through lectures and notes).

- To apply the machinery of statistical mechanics to common problems in physical chemistry, solid-state physics, and materials science (examples in problem sets).

- To appreciate the utility of this problem-solving ability to cutting edge problems of current interest (achieved through individual literature project).

Instructor: Prashant K. Jain, Alumni Scholar and Professor of Chemistry

Contact Info: Office: CLSL A224, Email:, Tel: (217) 333-3417, Web:

Office hours: For discussion of lectures, notes, problem sets, and exams: Fri 2–4 pm via Zoom.

No lectures: Sep 7 (Labor day), Nov 21–29 (Fall break)

Teaching Assistant: Jaeyoung Heo, PhD student in Prof. Jain’s lab (Email:, Office: A206 CLSL). Homework problem sets, solutions, and exams will be composed by Prof. Jain. All homeworks and exams will be graded by Jaeyoung in consultation with Prof. Jain.

Syllabus (Advanced topics, i.e., Chapters 5–7 will not be covered and are listed only for students interested in advancing their knowledge beyond the course syllabus)

1) The language of probabilities and microstates

2) Thermodynamic quantities, free energies, equilibrium and stability

3) The method of ensembles and partition functions

4) Ideal non-interacting systems: Quantum and classical statistics of indistinguishable particles: bosons and fermions, application to electrons in metals, phonons in crystals, photons, monoatomic and diatomic gases

5) Non-ideality: Introduction to inter-molecular forces

6) Theory of liquids and the Monte-Carlo method

7) Introduction to chemical kinetics and non-equilibrium statistical mechanics: fluctuations, time-correlations, ergodicity, transition states.

Exams and Grading:

Problem sets (10%): Four sets over semester; posted via Compass; submit answers in scanned or typewritten form through Compass. Submissions late by one day or less will be graded but only 50% of the points earned will be awarded.

Mid-term Exam 1 (20%): Oct 12 from 10–11 am through online proctoring. You may use a calculator and one sheet of scratch paper with concepts, equations, formulae, constants. You will submit answers on scanned sheets of paper or in typewritten format. 

Mid-term Exam 2 (20%): Nov 13 from 10–11 am through online proctoring. You may use a calculator and one sheet of scratch paper with concepts, equations, formulae, constants. You will submit answers on scanned sheets of paper or in typewritten format.

Literature Project (20%): Form a group (3–4 students) prior to end of Oct; chose a topic by the end of Nov; group work via Zoom and online collaboration tools in Compass; group presentations on Dec 7 and 9 via Zoom. Presentation time: 20 minutes + 5 minutes Q&A time for each group. It is preferable if all group members take turns presenting sub-sections of the topic.

Final Exam: (30%): Dec 14, 8–11 am through online proctoring. You may use a calculator and one sheet of scratch paper with concepts, equations, formulae, constants. You will submit answers on scanned sheets of paper or in typewritten format. A final exam review will be conducted by Prof. Jain in the form of office hours.

Text and Materials

-No required textbook.

-All course notes are provided on Compass in two formats: handwritten (.pdf) and typewritten (.docx). Handwritten course notes can also be downloaded from:

-Recommended texts (not required at all if you attend the lectures): Statistical Thermodynamics by McQuarrie; Atkins' Physical Chemistry: Quanta, Matter, and Change; Introduction to Modern Statistical Mechanics by David Chandler.  

-Useful resource:

Sample topics for literature project

-Thermodynamics of life (see What is Life? Book by Schrodinger; you may borrow the book from Prof. Jain)

-Molecular economics and analogies with molecular thermodynamics.

-Thermodynamics of the Ising spin model

-Entropy and free energy in photosynthesis

-Supercooled water (recall demonstration video from lectures).

-Unreasonable effectiveness of mathematics in thermodynamics: see Wigner’s paper:


Sample papers/papers chosen by former students

-Reversible unfolding of single RNA molecules by mechanical force, Science, 292, 733 (2001)

-Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level, PCCP, 11, 2767 (2009)

-BEC of photon gas, Nature, 468, 545 (2010)

-Life as a manifestation of thermodynamics and the second law of thermodynamics, Mathematical and Computer Modelling, 19, 25 (1994)

-Casimir force and vacuum fluctuations, Nature, 246, 396 (1973)

Access to technology: For students who may not have the requisite access to a computer and/or a reliable internet connection for participation in the online learning components of the course, please consider the “ATLAS Share” program link , which will assist you in obtaining an adequate computer and/or internet connectivity.


Commitment to equity and inclusivity: The effectiveness of this course is dependent upon the availability of an encouraging and safe classroom environment. Let us all commit to creating a positive and safe environment that allows all students equal respect and comfort. I expect each of you to help establish and maintain and environment where you and your peers can contribute without fear of ridicule, harassment, or offensive language. Exclusionary, offensive, or harmful speech, racism, sexism, homophobia, transphobia, or harassment will not be tolerated and in some cases will be subject to University harassment procedures.


Information about accessibility. To obtain disability-related academic adjustments and/or auxiliary aids, students with disabilities must contact Prof. Jain and the Disability Resources and Educational Services (DRES) as soon as possible. To contact DRES, you may visit 1207 S. Oak St., Champaign, call 217-333-4603, email, or go to the DRES website. If you are concerned you have a disability-related condition that is impacting your academic progress, there are academic screening appointments available on campus that can help diagnose a previously undiagnosed disability by visiting the DRES website and selecting “Sign-Up for an Academic Screening” at the bottom of the page.


Copyright and Site Design © Prashant K Jain