Irreversible processes
and fluctuations

to make some general statements about

systems which are not necessarily in mai.rvz—wa.. Thus ﬂM am%m_: dﬂwwﬂhm w.n—vms
equilibrium is approached and how E“EH.:% it is approac _p . o o
want to gain an understanding of the frictional mm..ga.m ?wm t Mmm ) Viscous
forces or to electrical resistance) which lead to dissipation of energy Evu.ﬁnmbw‘
systems of interest. Finally, we shall investigate mrm hzogﬁo”m ex mﬁm&
by certain parameters of systems in thermal equilibrium. though these

various questions may at first sight seem unrelated, our discussion will show
that they are actually very intimately connected.

1~ THIs final chapter we shall attempt

TRANSITION PROBABILITIES AND MASTER EQUATION

15-1 Isolated system
Consider an isolated system A. Let its Hamiltonian (or energy) be

3o = 3¢ + 3 (15-1-1)
where ¢ is the main part of the Hamiltonian and 3¢; < i is a small wm&ﬁonw_
part describing some weak interactions not included in 3¢. (For example, in
the case of a dilute gas, ¢ might contain all the kinetic energy terms of the
molecules, while 3; might describe the small interactions between the Sw_m.
cules.) Let the quantum states of 3¢ be denoted by r and their corresponding

energy levels by E,. If 3; = 0, these states would be quantum states of the

total Hamiltonian so that the system A would remain in any such state indefi-
nitely. The presence of the additional interaction 3¢; makes this no longer
true, since 3¢; is capable of inducing transitions between the various unper-
turbed states r. If 3 is small, if there is a nearly continuous distribution of
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‘are N states, one can write N such equations in the correspondi
of unknowns P,. Hence a knowledge of the transition uavpcwa.—_ﬂm
8 one to compute the probabilities P, as a function of time.

1 (15-1-5) is called the “master equation.” Note that all terms

eal and that the time ¢ enters linearly in the first derivative. Hence

er equation does not remain invariant as the sign of the time ¢ is

from t to —t. This equation describes, therefore, the irreversible
of a system. It is thus quite unlike the detailed microscopic equations
., the Schrédinger equation, which provide a description which
» the case because the energy levels are very closely spaced, or because one
of systems not all of which have exactly the same energy levels. (An
situation might be an assembly of nuclei located in slightly different
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By the symmetry property ( 15-1-3) the right side of (15-1-5) gives then
‘.m.‘. .Hh \~
”,m_.ﬁ.wm + E,, ﬁzs?..iuaq 2%
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5 on, (15-1-3) yields : .
so that (15-1-5) yields dP,/dt = 0 for all r. Thus Eq. (15-1-5) does then ( ) yie no..era_mo_he& oy AN
WO (5" ") < W, SYmmetry condition
id i ¥ (15-2.9)

describe correctly an equilibrium situation. z .
The relation (15-1-7) expresses a condition of detailed balance according ;

to which the rate of occurrence of any transition equals the corresponding rate 1 B nrvber of st aid i i, T il

; when 4 i known "

to be in

of oceurrence of the inverse transition; i.e., states of the same energy (for which
W,, # 0) are connected by the relation
PW, = P.W.,

w_. x H.Qﬁw:ul..@ B
v) « g9E, (15-2.3)

JREEY) in the number of states available 1o 4* e
This is certainly a sufficient condition to guarantee that dP,/dt = 0 for all r; .,.M.n.o ..uobmge total energy of A® and g s » QB mﬂa energy is £,
it is not, however, a necessary condition. As we have just shown, the condition £ u is the 553—.55 parameter of the & .M w (evaluated for
(15-1-8) is satisfied in equilibrium. It may, however, be possible to encounter & e can also obtain the canonica] distribution (15.2.3) f
nonequilibrium steady-state situations, defined by the fact that dP,/dt = o ‘ ng that the condition of detailed T ﬂZEKFBNEMﬂ _.Nu“a“._h Eﬂm

for all r, in which the condition (15-1-8) is not satisfied.{
Note that if it is assumed that the condition of detailed balance holds in an

.
ey

(15-1-8)

equilibrium situation where P, = P,, then one can immediately conclude from N
(15-1-8) that W,, = W,,. Since the transition probabilities W are dynamical EY P.P,W®O(rr' — o') = P PO (s — pp') (15-2-4)
quantities which do not depend on whether the system is in equilibrium or not, @ # 0. Using the equality (15-2-2) this becomes
it then follows that the relation W,, = W,, must be quite generally valid even & P, PU
'1“ = Ll
: e (15-2.5)

if 4 is not in equilibrium. Thus one arrives again at the result (15-1 “3): i
itself satisfies the canonical distribution, since the equilibrium of A" is

rbed when it is placed in contact with a heat reservoir at temperature

* For a discussion of time-reversal invariance, see R. C. Tolman, “The Principles of
e P « exp (—BE',) and (15-2-5) becomes

Statistical bno.."_.-b..ﬂ.: secs. 37 and 95, Oxford University Press, Oxford, 1938.
qﬂenhg&!arggngn&gaﬂ. see R. W. Zwanzig in

QEA&Q& Colorado “Lectures in Theoretical Physics,” vol. 3, pp. 106-141, Interscience
Publishers, New York, 1961. P, ¢tFv
For S e (18:3-0)

1 See, for example, M. J. Klein, Phys. Rev. vol. 97, p. 1446 (1955).
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tion probability W (rr! — ss') for the combined system A® by the probability

P', that A’ is in the particular state # and then E.Bz:.:m over all possible
initial states v in which A’ can be found and all the possible final states ¢ ip

which it can end up. Thus

and one regains the canonical

Suppose now that we o”czmm
assume that the heat reservoir A

W = 3 PLpE TS € o ) (18:3-8)

r's’

= C exp (—BEy), where C is some constant.

We=C)Y BB WO (38" — 1)

r's’

‘-~

gince P’y mmgm—mﬁq.

(15-2.9)

s —» rr R S

Fig. 1521 Diagram illustrating a system A in thermal contact with a heat
reservoir A'. The lines indicate the energy levels for states r and s of A, and
states ' and 8’ of A'. Since A’ remains always in thermal equilibrium, A' is
more likely to be in the lower state s’ (marked by the heavy line) than in
the upper state r'. As a result, transitions of the type ss' — rr', illustrated
in the left diagram, occur more frequently than those of type rr' — ss', illus-
trated on the right. Hence W, > Wy,. These transitions tend thus to pro-
duce the thermal equilibrium distribution where A is more likely to be in

state r than in state 8.
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£ again the magter equation (15-1-5)
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gain, if equilibrium prevails so that the ioal diste!
system 4, then the right side of (15 .ams._ﬁw_ﬂ @_ﬂsaﬁ_g (15-2:3)
as it should. nishes and dP,/dt = 0

3 Magnetic resonance

1ctive and important example of the ideas developed in t i
that of :.Snscﬁo resonance, Consider a msawsas hﬂﬂﬂﬁwaﬁ
sting nuclei (or electrons) of spin § and magnetic moment . 1f the
is placed in an applied magnetic field H, each spin can point either
allel to H) or “down.”” We denote the corresponding states by
\uoasﬁ_q. The two possible energies of each nucleus are then

. e = Ful (16:3:1)

Bopu number of spins pointing up and n_ be the mean number of
down. Clearly, ny +n_ = N.



SECTION Hm . w

554

Fig. 15°3-1 Ene,

of a nucleus of o”ﬂﬁ-ﬂuor

an external magne,; : ‘n
H. The Sauimaﬂ..wn fielg
2 p is assumed to e h-oa.ua.an
in this diagram. Sttive
The total Hamiltonian of the system can be written as
5@ = 3. + ¥z + 3
2 A ] i interaction between the
A nian expressing the Interactic e Nucleq,
Here 3Ca 18 ::.M_ mmwm%w“_ geld H; %z is the Hamiltonian &omo!gbm the :_wﬂ

ts and t - -
_m_nmﬁm_.n e.. all non-spin degrees of freedom of the nuclei and all other atoms iy, the

1.~ - 1. describes the interaction between the gp;

m:w.membam._ M”M Wﬂuﬂ%ﬂﬁnm causes awmumme.moum between the possible M@M
of the um:or el uelei. (For example, the magnetic moment of a moving nucleys
states of t M n ﬁzuﬂ.Em magnetic field at the positions of oﬁr.o.w nuclei and th;g
Mﬂ%ﬁ“ M »WMEE.QE.V Let W._ be the transition probability Per unit time
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with the lattice. The lattice itself is a T._.nmw m%mem.:vs W _25 be regardeq
as being always very close to internal equilibrium at the abso ;h.m temperatyre
T = (k8)~*. Thus (15-2- 10) allows one to write the relationship

W 0 i pead)
PR
— &) = 26uH. For nuclei the magnetic moment
hat in laboratory fields of the order of H = 104

(15-3-2)

Now (15-3-1) gives Ble
u ~ 510~ ergs/gauss so t

uss
Nﬁ _tm .m . HQIa

pull = b = —p— <1

for all but exceedingly low temperatures. Even for electronic moments, which
are about 1000 times larger, this inequality is almost always well satisfied.
By expanding the exponential, the relation (15-3-2) can then be written in the

form
g&.l =W

and W_, = W(1 + 28uH), where BuH < 1

Finally, there may also be present an externally applied alternating mag-
etic field of angular frequency w. If Aw =~ e — e, = 2uH, this field will
1duce transitions between the spin states of a nucleus. (If H =~ 104 gauss,
is typically a radio frequency (rf) of the order of 10* sec='.) Let w,_ be the
ansition probability per unit time for the “up” to “down” transition induced
7 this rf field. Then one again has the symmetry property (15-1-3)

(15-3-4)

(15-3.3)

Wy =0, =W
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(15-3-10)
ance of a rf field when w = 0, this yields upon integration
n(l) = no + [n(0) — ng) 2™ (15-3-11)

1(0) is the population difference at the initial time ¢ = 0. Thus n()
hes its equilibrium value nq exponentially with a characteristic “relaxa-
(2W)~'. Obviously, the larger the interaction W of the spins with
ce heat reservoir, the shorter the relaxation time.

hose now that the interaction of the spins with the lattice is very weak,






